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It is «rgued that Eulerian foneulations are intrinsically unsuitd 

for deriving the Kolaogorov theory because low-order Eulerian ■onents do 

not express sufficiently well a statistical dependence of noosiaultaneoos 

amplitudes that accompanies the convection of snail spatial scales by large 

spatial scales.    Illustration is made by applying the direct-interaction 

approximation and a related, higher Eulerian approximation to an idealised 

convection problem and to a modified Navier-Stokes equation.    Convection 

effects of low wavenumbers on high wavenumbers are removed in the modified 

equation, and as a consequence the direct-interaction approximation for it 

yields the Kolmogorov spectrum.    Low-order Lagrangian aoaents provide a 

promisingly more complete description of the convection of small spatial 

scales by large, and a search for satisfactory Lagrangian closure approxi- 

mations seen highly desirable. 
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1.     INTRODUCTION AMD SUNNARY 

The sUilarity th«ory proposed by Kol^ogorov1'2 for the sMll-scele 

structure of turbulence i« intuitively attractive, and the theory has received 

strong experimental support.    Yet Kolwjgorov's ideas have resisted deduction 

fro« the Navier-Stokes equation.    The present paper suggests that Eulerian 

analytical formulations are intrinsically unsuited to the task of deriving 

the Kolaogorov theory, and it ends nith a plea for attacks by Ugrangian 

■ethods. 

The argument can be suaurized slaply:    An underlying assvaptioo of 

the Kolaogorov theory is that very large spatial scales of motion coovect 

very small icales without directly causing significant internal distortion 

of the small scales. The assumption usually is considered to be consistent 

Kith, and to imply, statistical independence of small and large scales.    Sut 

this is true only for the simultaneous velocity distribution.    It is pointed 

out below that siaple convection of small scales by large scales inplies 

■tatistical dependence in the many-time distribution and that this dependence 

cannot adequately be specified by low-order Eulerian moments. 

If only a fe« Eulerian moments are specified,  it is not possible to 

distinguish between two quite different physical situations.    In one, the 

Eulerian tim»-dependence of the small-scale stmotures is due to their being 

swept by, undistorted, by the large-scale motion.    In the other, the time- 

dependence is due to intrinsic,  internal distortion of the small scales. 

The iaplicatioo is that no closure approxisatioo which retains only low-order 

Eulerian moments uses enough information about the flow to sort out convection 

effects from intrinsic distortion effects.    In contrast,  low-order Lagrangian 

■oments do appear to provide this information. 
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Tb«M eonaiiteratians ATOM out of «n invaitigatioo of th« intrtUl- 

md diMlpatioD-mc« pndlctian« of thm diract^intsrution «pproxiMtion3 

«nd • raUtod, higbar approKlMtion.11    A axmUr of raaulta froa this invatti- 

gatlee ara givan in tha praaaot papar in ordar to build and support tha 

arguaant.      Tha diract-interact loo approKiaation givas a salf-conaiatant 

cloaura of tba Culariaa statistical aquations at tha loMast nontrivial laval. 

It axpraaaaa tripla aoasnts in taraa of covariancas and yialds closed aqua- 

ticna far tba eovarlancaa.    It ia shown below that this approxiaiatioo ia 

iaoapabU of daacribiag adequately tba convection of saall scales by large 

soalaa.    Tba higbar approxiMtion givea cloaure at the next level.    It 

avpraaaaa higbar snMnts in tanas of triple aownts and yields cloaed aqua- 

tiona for tba tripla aoaanta.    This approxiaation is found to give an ia- 

provad but atlll aariously iaparfact representation of convection effects. 

Becauae of tba difficulty with convection effects, neither approxiaation is 

capable, without aodificatioo. of giving correct predictions of the inertial- 

ranga apactna law. 

Tbaaa aattera are clarified by considering a Modified Navier-Stokes 

equation ia which the convection of any given spatial scale by auch larger 

sealaa ia cooaiatantly reaoved.    The aodificatioo nay be interpreted aa an 

effective tranaforaation to the quaai-Ugraagiaa coordinate systea invoked 

by Kolaogorov.      Wbaa appUad to tha aodified equation, tba direct-interaction 

«ppraaiaatioa reproduces tba Kolaogorov scaling laws and inertial-range power 

law.    Tba higher approxiaation offers the hope of yielding a reasonably 

accurate nuaarical prediction of the Kolaogorov ioertial-range constant and 

tba univeraal Kolaogorov diaaipation-range spectrua.    However, this aasiaas 

ia advance tbat tba Kolaogorov hypothaaaa are valid.    It does not justify than. 



Th« p.p«r concludes with a di.cuiti« of a Lagrangian fraMwork which 

S««M capabia of diacri^nating batwean coovaction affacts and intarnal 

diatortioo affect, «van at tha cowianca laval of statistical da.criptioo. 

The associated equations are .ore co-plicated than the Ma^ier-Stokes 

equation, however, and it  is not clear that siaple but consistent closurs 

approxiMtions can be formulated. 

2.     STATEMENT OF THE KOLNOGOROV HYPOTHESES 

Tha basic assuaption of the Kol^gorov theory is that dyna^cal effects 

significant for energy transfer do not exist over indefinitely large ratios 

or spatial scales of .otion.    An equiralent statewnt is that such dynamical 

effects do not extend over indefinitely large waveniaber ratios whan the 

velocity field is rourier-analysed.    The physical picture is that lapge-sc*la 

■otioos should carry sull eddies about -ithout distorting thaa.    It is not 

obvious that this need be true, but the idea is certainly intuitively plauaible. 

The basic asstaption suggests    the following aore detailed hypotheses 

(but  probably does not fully iaply the. in a rigorous way):    1) The transfer 

of energy froa SMII to large wavenuabers at high Reynolds niabers proceeds 

by a cascade process which is effectively local in wavenuater.    2) Detailed 

inforaatioo about the low-wavenuaber structure  is degraded and lost during 

the cascade.    3) In consequence,  there is an asyaptotic high-waveniatoer range 

whose structure is universal and depends only on the kineaatic viscosity v 

and the rate  c at which energy-per-unit-aass is cascaded.    ») The turbulence 

is isotropic in this universal range, regardless of anisotropy at low wave- 

niabers. 
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lt folia« that tlM universal energy spectrua has the for»2 

Her. C is so- universal function and Jc8 i. a „o.inal dissipation wavenu«ber. 

A final assiaption is that 5) there exists an inertial subrange x « k    in 

which direct effects of viscous dissipation are negligible so that E(k) 

depend« only on c.    The inertial-rang. spectru« is then 

E(k)  . C(0)£2/3k-5/3. (2 2) 

An «.tensiv. discussion of the KolK«orov theory aau its i^lications 

is given in Ref. 2. 

3.    AH  IDEALIZED COHVECTION  PROBLEM 

It is not obvious that KolaogoroV, hypothesis about convection is 

correct for actual flo^s.    The swll-scale (high wavenuaber) structurs of 

high-Reynold« nurter turbulence appears visually to include narr«, but quite 

long vortex filaaects and sheets.    It is not wholly ciaar that structures of 

this kind are carried about by the larg-scale .otion without internal dis- 

tortion.     In the prssent Section, a very simple,  in fact  physically trivial. 

proble. is poeed in which the large-scale structures unquestionably coovect 

the «Mil seal« without distorting the..    I„ Sees,  u and 5.  it win ^ seen 

that this idealised proble. presents severe difficulties  for Eulerian closure 

approxiaations. 

Consider a total velocity field u t v with the  following prooerties:   v 

is constant  in space and ti- and has a Gaussian and isotropic distribution 

cvr an ense-ble of realizations;  u varies  in space and  is very weak coroared 

to vj  at tiM t « 0, u is statistically independent of v and has a Gaussian, 
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homogeneous,  iaotropic ensemble distribution.    Assume that viscous effects 

and tens bilinear in u both may be neglected in the Navier-Stokes equation. 

Then any Fourier component of u satisfies 

au(ktt)/3t  = -i(k'v)u(k,t), (3#i) 

whence 

u(k.t)  =  e-^^k.O). (3.2) 

All noments of the u field can be obtained fro. (3.2) and the stated 

statistical properties of v and u(k.O). For example, the time-correlatiou 

R(kjt.f ) = <u{k.tHilk(k.f)>/[<|u(k.t)|2X|u(k.f)|*91/2  (3.3) 

has the value 

FUk-t t'\  -  /.^Y'Mt-t'Jv     ,12 2     2 
R(k,t,t ) - ^e - -     > = eXp[. i v0%'(t-t')Z]t      (3.t») 

-here v0 is the rms value of y along any axis. The last member of (3.«0 is 

obtained by expanding the exponential in the average, using the rules for 

evaluating moments of a Gaussian distribution, and then resumsdng the series. 

Any other desired moment can be obtained similarly. 

At t = 0, the u and v fields are statistically independent by assumption. 

Since v gives simple translation of u. clearly the simultaneous values of 

the two fields are also statistically independent at any later time.  However, 

the many-time distribution« are not independent. The joint distribution has 

nonzero cumulants of all orders.  For example, it follows fro« (3.2) that 

,v.u.(k,t)u;(_k,f)> -  -ivJc.U-tMexpC- i voV(t.f)
2Xuj(k.O)u;(k.O)> 

(3.5) 

Similarly,  it may be  verified that  the mere general ci«ulant of the  form 

,v.vn...vlu.(k.t)u;(k.t')>-<v.vn...vtXuj(k.t)u;(k,f)> (3.6) 
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do«« not vanish unlaas t » t«. Thca« naultt illustnt« an laportant fact« 

Siapla coavactioD of aaall-acala flo» cc»pooants by larga-scaia conponantf 

doaa not iapiy statlatical indapandanca of tha two acalaa. On tha contrary, 

it raquiraa a atatiatical dapandanca which involvas etmilanta of all ordara. 

It has baan assuaad ao far that tha initial u fiald is purtly Gaussian, 

which iaplias statistical indapandanca of diffarant Fouriar «ylitudas. Now. 

suppoaa that at t « 0 an ineraaant 

Au^k.O) . ik|1(«jn-kJkBA
2)u;(p.0)u*<q,0) (3.7) 

la addad to tha aaplituda for a particular k, wbars p and q ara two wava- 

W*CtQn  ««ch that k ♦ £ ♦ q . 0. As bafora. lat u(p,0) and u(q.O) ba statis- 

tleaUy indapandant of a ich othar. Tha factor lki|(«jn.kjknA
2) anauras that 

AuOc.O) is inccapraaaibla and raal. 

Considar tha tripla corralatioo 

S(k.P,qjt.f.t-) «-^i-r L^ i^—1.      o.e) 
<k1ui(p,0)uj(q,0)Au.(k.0)> 

Tha quantity Au(k.t) avolvaa according to (3.2). It than follows raadily 

that 

S(k.p.,;t.t..t-) . <.-i<rit>rft..rat-)> . .„c 1 ^1,^.^123. 

(3.9) 

This tripla corralatlon la of a kind which, in actual turbulanca. would ba 

aaaoclatcd with anargy transfar among  tha aodaa k. p. and q. Nota that on 

tha diasooal t . f . t" tha corralatioo is Indapandant of t [slnca 

k ♦ p ♦ q . oj. This is a foraal expression of tha fact that tranalation 

by tha unifora r  fisld doas not distort tha u fiald. Away fro« tha diagonal, 

tha translation doas indue« a tiaa-dapandanca. as It doas for tha double 

corralatlon Wkit.t'). 
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Th« PMult« for RCkjt.t«) «nd S(k,ptq;t.t«.t") h«v« be*n obt«in«d undtr 

th« «••«ptioo that » is strictly coo«t«nt in «pac«.    Hoiww, thaw ratultt 

i   also papr«sMt a«y^>totic lUitt for a »ora ganaral tituation, in which v is 

confinad to v«ry »«aU (but ncnaaro) ****n\mb»nt hat a ho«oganaous, isolropic, 

Gaussian, statisticai distribution, and is statistically indapandant of tha 

initial u fisld.    This corrsspondanca is fairly claar physically but not 

i-—di,tsly obvious «athaaatically.    If » varias slowly in spaca, (3.1) aust 

ba raplacad by 

Ju(k.t)/»t « -ilk.k.»(k«)ji(k-ls',t), (3.10) 

which, in contrast to (3.1). couplas diffarant wavsvactora of th« u fiald. 

Howavar. it is not difficult to »arify by diract calculation («xpansioo in 

powar sarias. avaragin« using hosioganalty propartias, and suaaing) that (3.9) 

and O.H) still ars trua, piwidad that the following conditions arc satisfiad: 

1) Tha quantity <|u(k.0)|2> is a saooth function of k. 2) Equation (3.7) is 

raplacad by 

Aun(k.O) - ik "T^ (V
kikn/k2)un(p'0)U»(l,0)* <3,U) 

p.q 

whare k is any wavavactor within BOM finita *olu«. of wavavactor spaca and 

tha »uas-tion is ovar all p and q which fsll within soae othar finits volu^s 

of wavsvactor spaca (tha thraa volu^s not ovarlapfing).    3) Th« wawvactors 

•xcitad In tha v fiald art wry saall co^>arad to k, p, and q and also vsry 

saall coa^arad to tha width of th« volu^s invok«d in condition 2).    •») Tiaas 

larg« co^>ar«i to (»„k)'1 ar« not cooFid«r«d.    Conditions 1) and 2)  (dansa 

distribution in wa»a-v«ctor) «nsur« «rgodic prop«rti«s.    Conditions 3) and 

•») «nsuia that tha shaar aasociat«d with th« y fi.ld produc«s n«gligibl« 

distortion of th« u fi«ld in x spac«. 



This ■or« gtncral «xaaple still differs in two ways fro* r«al turbulence. 

In an actual flow the clean split  into low wavenumber v field and high wave- 

nuaber u field is not possible.    Moreover, the assumption of statistical 

independence of low and high wavenuabera at soaw given ti«e is not clvarly 

justified in actual flows. 

*.     DIR£CT-I*iTERACTION APPROXIMATION 

The direct-interaction approximation has been described in a series of 

3 H 6—9 papers.   *  * The basic idea »ay be »ost siaplv described as  follows,  for 

the case of hoaogeneous turbulence:    The energy transfer amonp the Fourier 

■odes is associated with triple correlations among triads of  interacting nodes. 

In the dirtct-interaction approximation,  it  is assumed that the correlation 

of any given triad of Fourier modes is induced by the continuous direct 

dynamical interaction of the triad, acting against a relaxation process which 

destroys the correlation.    The relaxation process  involves two contributions: 

viscous decay and dynamical relaxation due to interaction of each of the 

three modes with all the rest of the Fourier modes.    A consistent analytical 

expression of these ideas yields  formulas for triple correlations in terms  of 

two functions, the velocity covariance and the average response  function of 

a Fourier amplitude to infinitesimal disturbances.    The  approximation then 

yields closed integrodifferential equations which determine these  functions. 

Numerical integration of the direct-interaction equations has suggested 

that the approximation gives a fairly adequate quantitative description of 

the decay of Isotropie turbulence at wodest Reynolds numbers.      At high 

Reynolds nuabers, the approximation yields a universal high-tc  •soectrun 
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h«r« is clssrly spurious. This doss not sstsllish ths Kolsogorov theory, 

but it doss assn thst tbs rssult (d.l) should not bs coosidsrsd svidsncs 

sssiast ths thsory.

In order to forwilate the soproxisstioa for the Idsslizsd conesction 

problsa, it is nscssssry to introduce the sversfe response function G(k;t,t*) 

of ths Fourier nods k to infinitesasl perturbations. This say bs defined, 

is ths present csss, by

^^jCikjtjt*) • ^Cjj(k;t,t* )^,

Cjj(k;t,t») ■ «u^(^t)/«f^(k,f), Cj^(k;t,t*) * 0 (t<t*), (1.%)

where f is a solsnoidal forcing tsro introduced oo ths risht-hsnd-sids of 

(3.1) and de<K>*es functiooal differentiation. (See Refs. 3 and 7.)

Once induced, 6u is sii^lv translated by v. hence the exact value of G is

G(kit,f) . R(k;t,t*) (t > f). (“.S)

The direct-interaction approxinations for G and R have been obtained 

previously for probleso foroally identical with the present one. The results

are

G(kjt,f) ■ J^t2Vgk(t-f)J/VQk(t-t*) (t > t»), (**.6)

R(k;t,f) « C(k;t,f) (t > t»), (*.7)

where is the first-order Bessel function. This result for G can be 

repiesented as a particular partial swsMtion, to all orders, of the scries 

obtained by espaadinit the niddle steidter of (k.S) in powers of t-t* sod then 

avenviat**^ Lquation (k.6) can be derived in either of two wavs. If the 

V field U strictly constent in space, as asstssed at the bepinninr of Sec. 3, 

the problea becooes foroelly identical with tha randoa oscillator probleo 

tiuated in Ref. k, and the direct-interaction results are obtained by
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considcrlng a collactioo of systcaa. If the v field contains saall nonxero 

wavenumbers, the same results are obtained by the acre physical analysis 

of Ref, 3,

The direct-interaction approximation for S(k,p,q;t,t',t") is

S(k,p,qit,t',t") * G(k;t,0)K(p;t',0)K(q;t",0). (1.8)

This result also is obtained for either choice of v field. For present 

purposes assume that the v field contains nonzero wavenui^ers. The initial 

correlated increment Au^(k,0) given by (3.11) mav be considered the result 

of a^i ispulsive interaction among the u fiela modes at t « 0. For t > 0, 

there is no further direct dynamical interaction among k, p, and q. The 

procedure of Ref. 3, Sec. 2 yields

<u^(p.f)u^(^,t-)iu^(k,t)> -

- <u.l?.t)u*(p.0)u.(q,t-)u*(q,0)C^^(k;t,0)> *

" <«i(Ptt)u*(?,0)><u^(g^,t")u*(^,0)){c^^(k;t,0)>, (a.9)

whence (a.8). The factoring of the average is not part of the approximation 

but is an exact consequence of homogeneity.^ The direct-interaction approxi­

mation is invoxed only in asserting the first equality in (a.9). The approxi­

mation excludes the "indirect" contributions to S(k,p,q;t,t*,t") which arise 

from initial increments ^j(k-k*,0), where k* is a wavenumber excited in the 

V field. If no approximation is made, the interaction with v induces a 

statistical d^ndence of 3u^(k,t) on Au^(k-k*,0) and a dependence of 

“i<Ptt*)u^(q,t") on u^(pvk',0)u^(q,0) and u.(p,0)Uj(qvk*,0). In addition, 

more complicated dependencies are induced.

To what extent are the direct-interaction results faithful approximations 

to the exact 3, R, and S functions? The results for 3 and R may be considered
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qualitativily •cc«ptabl*.    Tbay gi*% relaxation and corralatioo titws ^(v k)~  , 

In accord «rith thm exact result*.    The principal flaw in tba direct-interaction 

expreseiona la    saall daaped oacillationa wbicfa have no counterpart in the 

exact expreaaiona.    (See Tig. 2 of Ref.  3.)    The appreotiaation for S shows 

a such nore serioua fault.    The exact  function is constant on the diagonal 

t • t*  ■ t", Mhile the direct-interaction result decays on the diagonal. 

Amy fron the diagonal, the qualitative behavior of the two expressions is 

sUilar. 

For t « t'  > t", S is the kind of triple correlation which, in actual 

turbulence, is associated with eoergy-tra&sfer.    It was pointed out earlier 

in this Section that whan direct-interaction is applied to actual turbulence, 

relaxation effects associated with energy-range convection account  for the 

difference between (2.1) and (*.l).    These effects are precisely analogous 

to the spurious decay of S(k,p,q;t,t,t) given by (*.8)  in the present cxaaplc. 

The exact nature of the interaction between high and low wavenuabers in 

actual high Reynolds aiafeer flows cannot be inferred fron the present con- 

siderations.    However, it would be niraculows if the spurious effects 

associated with direct-interaction here were sonehow exactly conpensated in 

actual flows.    Hence there is no justification for considering the result 

(«.1) as evidence against the Kolaogorov hypotheses. 

S.     A UIGUUt BJLEUAN ATPROXINATIOI 

The direct-interaction approdJMtion closes the Culerian statistical 

equations at tits  lowest aontrivial level.    It provides a foraula for expressing 

triple nonents in terns of the velocity covariance <u(k(t)-u (k,t'^>and the 
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A*tr«C*4 r««pcn««  faction Gikit.t') of an Isotropie flow field.    Th« fin«l 

aquations oontsin only th« Isttsr two qusotitiss.    For ths problaa of Ssc.   3, 

this dosurs givss s quslltstiwly sccsptabl« spppojLiastiaa to ths «totals 

corrslstiao Mk^.t') but s seriously fsulty rsprsssntstioo of coowctiao 

• ffscts or. tbs tripls corrslstiao S.    Ths question asturslly srisss of 

Mbstbsr this situstioo cs& bs rsnsdio« by a higher closure spprausation in 

«hictt the  finsl squstioos sre st ths level of triple nonents.    An apparently 

•elf-consistent approxisatioo of thia kind was introduced in s previous 

paper.      When foraulated for Isotropie turbulence, the final equations 

involve the following three kinds of higher atatiatical quantities: 

(ui(ktt)uj(p.t,)uB(|,t-)>,     ^(k.mu^p.tM/öf^q.f)), 

\«2ui(k,t)/«fJ(p,t,)«f*(q,t-)\. 

where k ♦ p t q « 0 and f is ss arbitrary infioitssinal forcing tem added 

on the right-hand-side of the Navier-Stokea equatioo.    An extended treatwnt 

of the higher approsisation is  in preparation.    Sane results obtained for 

the idealised convection problen of Sec.   3 will be stated now and cospared 

with the direct-interaction results. 

The exact equatioo for G(ktt,t*)  in the idealised problen is 

Wkit.tM/Jt  » HCk^.f) (t   > t«),    G(k;t,t) «  1,  (5.1) 

ubere 
IKkjt.t') »-i<4'y«u.(k,t)/«f.(k,t,)> (not tiaMd on j) (5.2) 

if v is constant  la space »or 

H(kit,t')  «  -i^.^-vUMÄu (k-k',t)/4f.(k,t')> (5.3) 

if v contains very snail nonzero waventaber«.    Here  f is an aioitrary forcing 
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turn mUmd to tte rlght-hnd-aid« of (3.1) or (3.10).    It is convenient to 

latroduoo tlM Uplaco trwafora 

«k,«)  » / •"•<t~t,)6(k;t,t')<l(t-f). (S.») 
0 

TIM trVMfOTB of (S.l)   U 

•C(k,a) ■ 1 ♦ li(k.a). (5.5) 

UM diroct-intoroctico clMur« foraula for H(k,«) is 

M(kf«) . .»Jk2[G(kt«)]2. (5.6) 

If (S.6)  U Butatitutod into (S.S), tbor« rasult« thm troDsfora of («.6). 

Tbn kiflMr approKiant ion jimUm tbm clonur* oquatioo 

M(k.a)  • -(»0k)2[C(k,«)l1. (»0k)"2[G(kt«)r2[H(k,n)]3. (5.7) 

■ota tkot (5.6) «xproMM H as a function of G «toila (5.7) contains H on 

both aidaa of tfaa aquation.    Equationa (5.5) and (5.7) may bm solvad tocatbar 

to yiald G(k(a).    Tba raault has baan obtainad and disowsad pravicxaly. 

Tha higbar approaiaation for RU^.t') satisfias (*.7)t  in uni—il with 

both tba aaaet and diract-iataraction raaulta. 

Ut 

S(k,p,qia^),c) « /// a'*t"bt,'ct"s(k,p,qit,f,t")dtdt,dt".    (5.8) 
0 - -  - 

t 
Tba diract-iataractioa cloaora foraula for S is 

S(k.p.q;a,b.c)  > G(k.a)R(p>b)R(q.c)l (5.9) 

tba traaafora of («.•).    Tba higbar approKiaatioa for S satisfias tba 

coaplieatad aqaatioa 

A A * A A ^ 

SU.p.qja^b.c) » C<k,a)R(p.b)R(q,c) t D(k,j>,q;a^),c)S(k,p,qia»b,c),    (5.10) 
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D<k.P.qi«.b.c)  ' «np.b)Y(q,cHyy(q.c)Y(k,.)*xm,«)T{p,b), (s.il) 

r(k..)   .  (»0k)"1«(k..)/a(k,*)   «  (r0k)-l{lG{k^n-^M\, (5<12) 

Th. quMtitie. x, y, i «« th« ccines of th«  int.rior «ngU. oppo.it« k, 

P. q, r-vcti**iy,  ia « triangle *fao»e side, «r* k, p, q.    Equation (5.9) 

yi«i«te 

G{k,«)R(p,b)R(q,c) 
SU.p.qja.b.c)  -    —^  . (5 13) 

1 - D(k.p,q;a,b,c) 

It will b« not«l th«  the higher «pproxiMticos for H mi S consist of 

the direct-intersction contributions plus ter» «hich  inTolre H and S th »- 

Miv...    The added terw correspond to the inclusion of additional infinite 

subclasses of terw fr« the expansions of the exact H(k;t.f) and 

SU.p.qjt.f.f) in powers of the ti-e-argu^nts.    In the diagra. langua«« 

of Ref.  S the »ddmi terM   -onstitute iterated wrtex corrections. 

To what extent  is the higher approximation an iaproeaent?    The ne« 

^raiuM  for G and R turn out  to be »ery close approxiaations to the exact 

»aluas and r^resem  a aarked quantitätige iapro^e^nt  over the direct- 

interaction approxiaation  (see Ref.   *. rig.   13).    The question of priae 

interest her«  is the behavior of S  on the diagonal t  = t«   = t", which Mr 

be explored by taking the  inverse  transfer, of  (S.i3).    The analysis  is 

c^bersce and lead, to n-erical evaluations.     However, an esti^te of the 

isprov^ent  in th« behavior on the diagonal My be obtained easily.     In all 

thrM rases,  exact, direct-interaction, and higher approxiaetioo, 

Stk.p.q^t.t'.t-) decays away  fro. the diagonal  in »or« or less the  saw way. 

Thu. the behavior on th« diagonal My be crudely estiMted fro. th« value 

of the  integral S(k.p,q;0.0.0).     For th« exact  S,  this quantity is  infinite 

becauae there  is zero d«cay on th« diagonal.     In  th« direct-infraction 
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approKiMtioa, 

T^kpqS(k,p,i;0,0,0)  * 1. (5.1*) 

la the biclwr ^proaiMtioo, S(k,p,qiO,0,0) rMMins  finit«, whlcfa shew» that 

decay on ttaa diacoaal still occur«.    HowcTcr, then«  Is m increas« orvr th« 

dir*ct-lnt«r«ctlan valut, which indicates that th« decay is slower.    The 

factor of iacreaae depaoda on the shape of the triangle foraed hy k, p. and 

q. 

Tdbla I shows the valuet of S(k,p,q;0,0,0) given by (5.13) for several 
A 

cboicaa of waveouaber ratioa.    The increase of S(k,p,^;0,0,0) cows froa 

two factors.    First, C(k,0)  is bigger in the higher approxiaation [the 
A. 

diroct-interaction, higher^approxiaation. and exact values of v^GCk.O)  are, 

reapectively 1,[(1 t Si)/7ll/7 «  1.272, and (»/2)1/2 ' 1.253J.    The second 

factor is the danoaiaator in (5.13).    This factor alone is actually a acre 

valid nsasur« of the decay of S(k,p,q;t,t,t) than is S(k,p,q;0,0,0)  itself. 

The lat_t«r quantity reflects,  in part, changes  in rate-of-decay perpendicular 

to the diagonal. 

A 

TAALC I.    Values of S(k,p,^;0,0,0)  in the higher approximation. 

k:p:« l/tl-D<k,p,q;O,0,0)] vJkpqSik.p.qvO.O.O)  

1:1:1 13.71 28.21 

1:2:2 6.66 13.70 

1:*:% «».05 8.3» 

!:«•:- 2.62 5.39 

3:i»:5 7.»2 15.27 

X:l:/5 7.9* 16.3* 

Aoothar aeaaure of the iaprovaneot in the higher approxiaatioo is the 

bebavior of Sik.p.qit.t.t) at t « 0.    In the direct-interact ion approxiaation 
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th« Mcood <l.ri».ti»« with respect to t  is negatire.     In the higher «pproxi- 

■«tion, it is not h*rd to shoH that the first three derivstires vanish and 

the fourth derivativ«  is negativ«. 

In the present context, the fact of principal interest is si«ply that 

the spurious reUx*tiot» effects of the direct-interaction approxiMticn are 

reduced, but not eliminated.    Direct-interaction provides closur« at the 

covariance level and gives a qualitatively satisfactory double correlation 

RU^t').    It «ight b« thought, by analogy, that the higher approxiMtion, 

which gives closure at  the triple K*er.t  level, would give a qualitatively 

satisfactory triple correlation S(k,p,q;t,f,t-).     But clearly this is not 

the 

6.     MODIFIED JUVIER-STOJCES EQUATION 

The Havier-Stokes equation can be altered so as to r»ove consistently 

the convection effects of low wavem-ber, on high wa^n^bers.    The .odified 

equation serve, to giv, a precise statement  of Kol«ogoroVs basic hypothesis 

and to confi« the role of convection effects  in producing the discrepancy 

between the direct-interaction and fcolaogorov spectra. 

The «odified equation My be written 

(>/>fvk2)u(k,t)  .  -ii;.t«(k.k').k.]u(k',t)-ik.(k,t).    k.u(k.t)   =  0.  (6.1) 

-here .(k.t)  is the Foxier a^litude of kine^tic pressure and [».   «its all 

t«r«s such that " 

|k-k'|   < k/a        or !k.k>|   < k./a. ($>2) 

The paramter a i, an arbitrary cut-off ratio  >1.    The case a * - giv., th. 

un«xtified Navier-Stokes equation. 
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J* uik-k* .O'k'  is th« FourUr transfer« of th« convection operator 

u*V  .    To «•• tbc significance of truncating this SUM, consider a given wave- 

vector triad tkt JJJt 1^. »"c* that k*£*q « 0 and either q < k/o or q < p/a. 

The interaction of this triad is represented by a set of teras in the Navier- 

Stokes equations for u(ktt)t u(p,t), and u(q,t).    The ten» in this set »»hich 

«re emitted and retained in the aodified equations are shewn in Table II. 

The oaitted and retained terms separately conserve the «nergy of tve triad. 

Thus the Modified equations are energetically consistent.    The terms omitted 

correspond to the convection and straining of small spatial scales by large 

scales.    It  is clear from Table II that these terms are not associated with 

energy transfer out of q into k and p, since the terms do not contribute to 

the change of u(q,t)  in tnc unmodified equations.    However, these terms do 

reprmsent a straining action which can yield energy transfer between k^ and p. 

The terms retained represent a transport of the momentum of the large-scale 

motions by convective action of the small scales (small and large here are 

relative term«).    These terms comprise the eddy-viscosity nechanisa (v .altered 

from the original Mavier-Stokes equation) by which energy is transfered fron 

q to k and p. 

TABU II.    Terms omitted and retained in the modified Mavier-Stokes 

equation when q < k/a or q < p/a. 

Omitted Retained 

In k Eq. i[u(-^).p]u(-p) i[u(-p).q]u(-5) 

In p Eq. i[u(-q).k]u(-k) i[u(-k).q]u(-q) 

In q Eq. Mone i[u(-k).p]\i(-p)*i[u(-p)-kjul-k) 
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Kolaogorov'a basic assuaption is that the action of large-scale aotici» 

on sufficiently smaller-scale Motions is a simple convection process that 

does not affect  appreciably the energy dynamics of the smaller scales.    This 

hypothesis can be given a precise statement in terms of the modified Navier- 

Stokes equation:     If the cut-cff ratio a is taken large enough, the difference 

in the energy spectrum £(k) for the modified and unmodified equations can be 

made as small as desired, when the spectrum is normalized in terms of the 

Kolmogorov similarity parameters.    For given o, this difference is independent 

of f^ as R^ -. 

Since the modified equation removes the convection effects of large 

scales on small scales, it represents,  in effect, a transformation to the 

quasi-Lagrangian coordinates called for in the original statement of 

Kolmogorov's theory.      In this regard, the modified equation has the ad- 

vantage of being self-consistent for all t.    It is difficult  to construct 

a well-defined transformation to locally co-moving coordinates in x space 

which is similarly consistent. 

'he direct-interaction approximation  for (6.1) goes through just as 

for the unmodified Navier-Stokes equation.    The only difference in the final 

statistical equations is that the geemetrical coefficients which occur now 

have altered values.    Th.   new values are given  in the Appendix.     When o is 

finite, the direct-interaction approximation yields an asymptotic spectrum 

of the Kolmogorov form (2.1) rather    than (•*.!).    This comes about as  follows: 

The renoval of cc^vection effects of the energy-ra ige on high wavenumbers 

has the result that  SUjt.t1) and GU^t»)  for large k have  decay times 

determined by local excitation levels  rather than by the energy-range 

excitation  level v  .     In consequence,  the relaxation of triple  correlations 
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th. high war.nu^r«   i, in<Up«nd.nt of v0.     The Kol^goror spectru. 

then results inescapably because  it  turns out  that  the enersy-transfer  is 

local, as in  the unmodified case.     R(k;t,t') and G(k;t.f) may no- be 

interpreted a. correlation «nd response functions ^asured  in quasi-Ugrangian 

coordinates. 

Figure  1 shots SOM results of nvmrical solution of the direct- 

interaction equations  for several  values of a,  in the range K^ v 600-800. 

The curves -ere obtained as  folio«.    Rando. stirring forces, confined to 

«av.nu.bers below those sho-n. were  invoked in order to giv. a statistically 

steady state.       The response and ti^-correlation  functions wer. fitted  to 

Gaussian functions of difference tis*. thereby yielding closed equations 

which contain only EU) and the characteristic correlation and response 

timm» RU.O)  and G(k,0).9    These equations were discretized in 1/-   octave 

k band« by « previously tested sehe««7 and solved by iteration.    The overall 

n«.rical error, due to the  fitting of th« response and correlation functions, 

the di.cretiiing in k,  and truncation in k,  is estinated as  less than 10% of 

local value. 

The function plotted is  the one-dimensional spectrum 

• ^k)  . i / (1  . k2/p2)p-1E(p)dp, (6.3, 
k 

normalised according to the Holmogor^v similarity scaling.     Nus.erical invest!- 

gation indicate« that the finite a curves diff.r inappreciably fro« the 

amywftoxic curve« for R^ . -,  in the range of k/ks  shown.    The a = - curve 

(unmodified equation) diff.r«  inappreciably from the R^   * - values,  if it 

i« normalised «ccording to the kd scaling associated with  (-.1).    it  follows 

from (H.2)  that  the poeition of this  cunre on th. present  Koi«>gorov-,caled 
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tb« bigb wawiuBbars la iodapandcnt of Tht KolBogorov spectrua

then rosults inescapably because it turns out that the eoergy-transfer is 

local, as in the unaodified case. R(k;t,t') and G(k;t,t*) nay now be 

interpreted as correlation and response functions aeasured in quasi-Lagrangian 

coordinates.

Figure 1 shows sane results of nuaerical solution of the direct- 

interaction equations for several values of a, in the range % 600-800.

The curves were obtained as follows. Randon stirring forces, confined to 

wavenuabers below those shown, were invoked in order to give a statistically 

steady state.^ The response ami tine-correlation functions were fitted to 

Gaussian functions of difference tine, thereby yielding closed equations 

which contain only i(k) and the characteristic correlation and response 

tines fuk,0) and ^k,0).^ These equations were discretized in !/•' octave 

k bands by a previously tested scfaene^ and solved by iteration. The overall 

nuaerical error, due to the fitting of the response end correlation functions, 

the discretizing in k, and truncation in k, is estiaated as less than 10% of 

local value.

The function plotted is the one-diaensional spectrua

••

♦ |(k) . 4 / (1 - k^/p^)p'^(p)dp, (6.3)

^ ' k

iMraalixed Mxording to the Koisk)g<»x)v siailarity scaling. Nuaerical investi­

gation indicates that the finite e curves differ inappreciably froa the 

asynptotic curves for * •, in the range of kA^ sho*m. The a s • curve 

(unaodified equation) differs inappreciably froa the « ** values, if it 

is nnrasi Iteil according to the k^ scaling associated with (s.l). It follows 

froa (e.2) that the poaition of this curve on the present Kolaogorov-scaled
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••tiMtM of C(0)  fro« different sources »how a substantial spread. Grant, 

10 Stewart, and Moilliet      have obtained C(0)  x i.in* from acasurenents   in a 

tidal channel at R    >  3000. 

The higher approximation discussed in Sec.   S  does not  reaove  coapletely 

the spurious relaxation of high-waveniMber triple correlations  due to energy- 

range  convection effects.     Consequently,  it   leads,  like the direct-interaction 

-3/2 approxiaation,  to an asymptotic k inertial range  law.     However,  the 

spurious effects are  sufficiently reduced that  the higher approximation may 

yield a rather accurate prediction of the  Kolmogorov constant and of the 

Holaogorov dissipation spectrum if  it  is applied to the modified Navier- 

Stokes equation.    For this to be so,  there must  be values of the cut-off 

ratio a such that:     1) The exact normalized E(k)  associated with modified 

and unmodified equations differ very little.    This requires that a be  large 

enoufh that the cut-off removes very  little of the energy-cascade of the 

unmodified equation;     it is presupposed here that Kolaogorov*» hypotheses 

are correct.    2) The errors due to spurious relaxation are sufficiently 

•■*11 th^t the higher approximation gives  an accurate representation of the 

dynamics of the modified eqaation;    this requires that a be small enough that 

the residual spurious effects are small compared to the real relaxation 

effects associated with energy-transfer and internal distortion among  local 

waveniabera. 

An investigation now in progress  indicates that values of a satisfying 

these  two opposing cooditioca should exist  and indicates also a way of esti- 

mating the residual errors,  on the aastaption that Kolmogorov is correct. 

The difficulties of numerical solution posed by the final equations  are severe. 
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7. NOTIVATIOII FOR LAGRARGIAR APPROACHES

The preceding analysis has made clear that direct-interaction gives 

spuriotM relaxation effects by loe eavenuaber flow-co«pooents on triple 

correlations tttic high-vavemad>er coepcnents. It is pertinent to ask why 

this particular kind of trouble should arise in an approxieation which is 

energetically consistent and whicdi appean to provide a reasonably faithful 

description of turbulence at Reynolds nuii>ers lav eno««b that a wide range 

of waveme^rs is not strongly excited. In the author's judgeent. the 

imderlying troid>le is elewntary and can be expected to afflict »y closure 

approximation which expresses triple correlations as a function of E(k), 

R(k;t,f), and G(k;t,f).

In the case of turbulent interaction among wavenusbers similar in 

magnitude, the function R(k;t,t') expresses the less of correlation associated 

with disordered internal distortion of the flow patterns. The ntawrical 

success at low Reynolds nuid>ers^ suggests that this internal cistortion 

produces relaxation of triple correlations in a way that is reasonably well 

described by the direct-interaction closure formula. 3n the other hand, the 

energy-range convection at high Reynolds numbers produces a loss of correUtion 

in the a^>litude of a high-wavem*ber mode which is not associated with 

significant internal distortion. The difficulty here is that it is impossible, 

given only R(kjt,t'), to say how much of the correlation loss is d\ie to dis­

tortion and how much to simple convection. In order to distinguish the two 

effects, it is necessary to S{>ecify the higher statistical structure of the 

velocity field. In particular, it is necessary to say southing ^>out tl^ 

cwilants of form (3.6) which describe the joint-distribution of low and high 

wavenumbers. This higher statistical information has no way of entering the
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direct-int«r«ctioo schcaet    In effect,  the closure  foreula makes  the  decision 

that the  loss of  correlation in  individual «ode «aplitudes  is entirely 

associated with  intrinsic,  internal disordering of the  flow oatterr.s. 

Since  direct-interaction gives  qualitatively correct  beha  ior   for the 

double  correlation  Rd^t,^)  even when   convection effects  are  strong,   it 

■igbt be hoped that   closure of the  Lulerian  statistical equations   at   one 

step higher would  give  qualitatively  correct   triple  co-Telat ior.s.     The 

results presented  in Sec.   S  do not   support   this  hope.     The   failure  night   nave 

been anticipated.     In order to specify  that  the a field is suffering pure 

coovectian over finite  tises of evolution,  it   is necessary  to give  proper 

values to the entire  infinite set of cumilants  of the  fore (3.6).     It   is not 

too surprising that  a finite-order truncation of the statistical equations 

fails to accoaplish this. 

The analysis  in this paper has been based on the sany-tiae distribution 

of  the velocity aaplitudes.    The  cusuiaats  (3.6)  describing   interdependence 

of low and high waveniabers all can vanish  if  the amplitudes  are seasured 

sirultaneously.     Miy not  then seek a closure approxisation involving  only 

siaultancous aaplitudes and thereby avoid all  the difficulty?    The  qvtasi- 

12 normality approximation       is an energetically conservative closore  of this 

kind.     If this approximation is applied to the   idealized convection  profiles 

of Sec.   3,  it  is easy to see that  spurious relaxation of triple momeats of 

the u field in fact  does not occur.    The trouble is that, when applied to 

actual turbulence, the approximation also gives no relaxation of triple 

correlations produced by  interaction of  similar spatial scales.     Since only 

simultaneous amplitudes enter the equations,  tne approximition has  no way 

of describing loss  of correlation and consequently embodies  no mechanise at 



-25-

all for dynamical relaxatioo of dyt.aaically induced correlatioDS. The cod-

sequenc* is an UBiph3rsicsl overshoot of initially built-up energy-transfer

and an eventual prediction of negative energies in the spectr^si regions

13 i*»
wnich have strongest initial excitation. * Because of the failure to

esbody relaxation effects in interactions of nearby wavenunbers, the approxi«

nation does not yield Kolnogorov's spectina.

In contrast to R(k;t,t*)« an ^>ropriately constructed Lagrangian

double correlation appears to pemit a clear specification of uhether loss

of correlation in a single Fourier node is due to internal distortion of

the flou structures or to sinple convection of these 8tr\Krt«res. Let

u(x,t|s) be defined as the velocity at tine s of a fluid elcnent uhich

arrives at the point x at tine t. This will be called the Lagrangian velocity

in what follows, because it is aeasured along the trajectory of a fluid

particle. If t is fixed, u(x,t|s) nav be identified with the Lagrangian

15
velocity as wore custonarily defined, with x serving to label the particular 

particle idiose path is being followed. The full function iHx.tis) nay be 

regarded as giving an infinite set of Lagrangian velocity fields (according 

to the restricted definition) with each tine t specifying a different l^>eling 

of the particle trajectories.

The statistical structure of u(x,t!s) nay be specified by its noagnts.

If the field has zero nean, the siwplest nonvanishing nonent is the covariance

U.^(x,t;x*,t'|s,s*) = ^u^(x,t|s)u^(x*,t*la* )^. (7.1)

This function has four tine argtnwnts instead of the two wbi^ appear in the 

Eulerian covariance ^Uj(x,t)u^(x*,t* )^. Consequently, it conveys norc infor- 

sation. Consider again the idealized convection oroblen of Sec. 3. Under
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tte aMia^itiao of spotioHy constant ▼ field and negligible t< 

ia j, the Lagrongiaa velocity is

a(s,t|s) * u(x,t).

bilinear

(7.2)

sisco the iBifora translation by jr does not change the velocity of any 

particle. Let the Lagrangian tise-correlatioo be defined by

R(kit,f|».«*) * <»(k.tIs).u*(k,t'|**)>/l<|s(k,tls)|^Xl«<k^t*l»*)l^]^^.

(7.3)

ehere ^k,t|s) is the Fourier coefficient of u(s,t|s). By (7.2),

R(k;t,t'|s.s') * *(k;t,t*). (7.s)

AMording to (7.s), R(kit,t*|s,s*) eshibits no dependence on s and s*, 

the tines at ehich velocity field is aeasiired. It varies only with the 

tines t and t* which specify the particle labeling. On the other hand, if 

the tt field exhibited internal distortion also (change with tine in a frane 

aoviag with v) there clearly would be a dependence on t and t*. Than it

possible that the lowest-order Lagrangian tine-correlation nay convey 

infiimation to decide bow ouch of the change in givm Fourier conponents 

of the velocity field is due to sinple convection and how nuch to internal 

distortion. This suggests that it is worthwhile to search for a consistent 

Lagrangian closure approxination at the level of U^j(s,t;x',t*|s,s*).

Uhforttmately, the equation obeyed by ^^t|s) is nuch nore conplicated 

than the Mavier-Stokes equation. When the pressure is elininated, the Mavier- 

Stokes equation nay be written

(3/Jt ♦ • v9^uj(x,t) ♦ ■^(’)t»,(«,t)u^(ii,t)], (7.5)

»"^w(x) i -(•w)*Vl«r5jr^w<i')A', (7.6)
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for any suitably baha^sd functian iK*). The field u(x,t|s) satisfies
s

u^(*,t|s) * eKp^[-£(«,t|0)*?)tt^(«.0|0) ♦ J^dr e*p|r)*Vj

■ {v9^u.(a,rlr) ♦ Hj^j^(7)tu^(*,r|r)u^(a,r|r)3), (7.7)

Inhere
(7.8)^(*,t|r) = / u(x,tlr*)dr*

measures particle dis?iace«Jt in the internal (r.t) and u(x,o|0) is the 

pr«scribed initial field. Mote that u(K,t|r) * u(*,t) by definition. The 

notation e*p^ signifies that in the expansion of the exponential aU ^ factors 

appear to the right of all C factors; that is, 2. <*<*» *»«* operate on The 

derivation and interpretation of (7.7) is sinpla. The operator 

is a displaccn«at operator; e.g.,

exp^C-(*V}u(x,0) s u(x-{,0). (7.9)

Thus (7.7) states that the velocity field at later tines is the result of 

seU-convection of the initial velocity field, together with convection of 

all the velocity increnents indued at later tines by ▼iscoos and prMsure 

forcM.

It has so far proved difficult to carry out consistent closures of the 

statistical equations generated by (7.7). The nonlinearity is transc«idental, 

in contrast to (7.5). A related fact is that the inconpressibiUty condition 

for the full field u(x,t|s) has an awkward fom. InconpressibiUty for all 

tines is autoMtically guaranteed by (7.7), if u(x,0|0) is divergenceless, 

but it is difficult to n^a statistical approxinations which preserve this 

property.

A prelininary appUcation of the u(x,tjs) fomalisn to dispersion of a

scalar field by h
In

eous turbulence has been reported. Closure
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obtaiiMd by tbm crud* approxiMtioa that C(x,t|s) is auItivariate-Gaussiac. 

This givas SOM rsasoDablc predict ions f«* the evolutioo of the scalar 

spectrva. (The results are quite different froa those of the Euierian quasi- 

aoraality ^>proKiaatian.) In partic\ilar, the result f«n* the straining effect 

of large eddies on saall scalar-field structures secas qualitatively pl^isible. 

In contrast, the direct-interaction anx'cainatian for this problee,^^ exhibits 

spurious relaxation effects on the scalar field very sinllar to those dis­

cussed in the present p^per.

The assuaption of aultivariate-<laussian £ is exactly Talid for the 

idsaUsed problra of Sec. 3 and yields both (3.h) and (3.9). The reason is 

that tsider the conditions iaposed there

£(x,t|s) * (t - s)v,

and is Caustlan. however, this closure approxieatioo can violate 

incoapressibility and thereby lead to serious troubles if it is applied to 

(7.7) iBder acre physically interesting conditions. Other closure a^roni- 

aations should be sought, m»d alternative Lagrangian forKilations should 

be explored.
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riGURE CAPTION

FIG. 1. One-di*ensiooal energy spectrrj* at high wavenumbers according to 

the direct-interaction approximation. Curve 1, uneodified Navier-Stokes 

equation (o * •), Rj^ 820. Curve 2, modified Navier-Stokes equation, 

a = 4^, Rj^ 600. Curve 3, modified equation, a = 2^2, R^^ 4, 610. The 

dashed lines show slopes of -3/2 and -5/3 for coroarison. The circles 

represent data points measured by M. -. Gibson on the axis of an air jet 

at 800.




